“มองอนาคต 5 เทรนด์ การพัฒนาซอฟต์แวร์ที่ถึงเวลาต้องลองใช้งาน”
เริ่มที่เทรนด์แรก Low Code เทคโนโลยีนี้มีการใช้งานมายาวนาน ในช่วงโควิดที่ผ่านมา โครงการ Open Source ได้เติบโตอย่างรวดเร็วมาก ยกตัวอย่าง 3 โปรเจกต์ในช่วงโควิด ได้แก่ Appsmith, ToolJet และ Budibase ซึ่งบางตัวเกิดขึ้นมาก่อนโควิด แต่ในช่วงโควิดการพัฒนาเกิดขึ้นอย่างรวดเร็ว มีการลงทุนอย่างมากในช่วงปี 2021 ที่ผ่านมา และในปีนี้โดยรวมของตลาด Low Code มีการเติบโตถึง 25% โดยตลาด Low Code นั้น เรามักมองรวมเทคโนโลยีหลายตัว เช่น RPA ก็อาจจะมองว่าเป็นส่วนหนึ่งของ Low Code แต่ที่เติบโตค่อนข้างมากตัวหนึ่ง คือ Low-Code Application Platform ที่ใช้พัฒนาแอปพลิเคชันติดต่อผู้ใช้ โดยเราสามารถเชื่อมระบบเข้ากับ Database, Google Sheet, Microsoft Excel แล้วนำมาทำแอปเป็นหน้าจอ UI เป็นอีกเทรนด์หนึ่งที่เติบโตขึ้นมาก เทรนด์ที่ 2 ความนิยมในภาษาใหม่และเฟรมเวิร์กใหม่ ๆ ยังคงมีมาอย่างต่อเนื่อง ถ้าใครได้ทำงานพัฒนาซอฟต์แวร์มานาน เราก็จะพบว่าเฟรมเวิร์กที่เราใช้งานอาจจะต้องเปลี่ยนไปเป็นช่วง 3-5 ปี แม้หลายปีที่ผ่านมา React และเฟรมเวิร์กในกลุ่มเดียวกันจะได้รับความนิยมอย่างกว้างขวาง แต่ก็มีเทคโนโลยีแพลตฟอร์มที่ได้รับความนิยมมากขึ้นเรื่อย ๆ ตัวหนึ่งก็คือ Svelte ที่การใช้งานยังไม่เยอะมาก แต่ผลสำรวจของ Stack Overflow กลับแสดงให้เห็นว่าผู้ใช้นั้นชื่นชอบเป็นอย่างมาก และอัตราการใช้งานก็เพิ่มขึ้นอย่างรวดเร็ว นอกจากนี้ยังมี เฟรมเวิร์กตัวหนึ่งที่เริ่มเด่นขึ้นมา คือ Phoenix ที่ใช้ภาษา Elixer แม้อัตราการใช้งานยังน้อยมากแต่ผู้ใช้งานแสดงความชื่นชอบเกิน 80% นับเป็นเฟรมเวิร์กที่ผู้ใช้รักที่สุดตัวหนึ่ง สำหรับภาษาโปรแกรมที่กำลังเป็นที่นิยมคือภาษา Rust ที่ก่อนหน้านี้ก็เคยติดอันดับภาษาโปรแกรมมิ่งที่ผู้ใช้ชื่นชอบอย่างมากเป็นเวลานาน ปีที่ผ่านมาบริษัทขนาดใหญ่อย่าง AWS, Microsoft รับวิศวกรในภาษา Rust เพิ่มมากขึ้น ทั้งการใช้ภาษา Rust ในบางโครงการของบริษัทเอง และการนำมาช่วยพัฒนาตัวภาษา เทรนด์ที่ 3 คือ AI จะยังไม่มาแย่งงานเราในเร็ว ๆ นี้ (แต่ในอนาคตก็ไม่แน่) ด้วยกระแสนิยมของ ChatGPT ในช่วงที่ผ่านมา หลายคนก็อาจมีคำถามว่า เทคโนโลยีนี้จะทำให้โปรแกรมเมอร์ตกงานไหม คำตอบคือ ปีนี้ยัง! กลับกันคือเราน่าจะเห็นการทำงานของโปรแกรมเมอร์ที่มี AI มาช่วยทำงานมากขึ้นเรื่อย ๆ ปัจจุบัน AI สามารถช่วยงานได้มากขึ้น สามารถแปลงคอมเมนต์เป็นโค้ดได้อย่างชาญฉลาด หลายครั้งสามารถเขียนทั้งฟังก์ชัน หรือเขียนตัวทดสอบแอปพลิเคชันได้อย่างแม่นยำรวดเร็ว แต่ AI ก็ยังต่างจากคำตอบของมนุษย์ที่มีความรู้อย่างแท้จริง AI จะประมวลความรู้จากแหล่งต่าง ๆ ซึ่งอาจไม่ถูกต้องทั้งหมด และจุดอ่อนของ AI มันไม่ได้ทดสอบคำตอบของมันจริง ๆ ต่างจากโปรแกรมเมอร์ที่ก่อนเราจะนำงานไปส่ง เราก็ต้องทดลองคำตอบของเราก่อนว่าทำงานได้จริงอย่างที่ต้องการหรือไม่ อย่างไรก็ตาม AI ก็เป็นเครื่องมือที่ช่วยในการเขียนโปรแกรมได้ โดยมีเครื่องมือที่แนะนำให้ใช้ ได้แก่ GitHub Copilot และ Tabnine โดยควรใช้อย่างระมัดระวัง อย่าลืมว่าโค้ดเป็นความรับผิดของผู้เขียน แม้ AI จะมีข้อจำกัดแต่ก็มีแนวโน้มที่จะมีการพัฒนาอย่างต่อเนื่อง เป็นอีกหนึ่งเทคโนโลยีที่น่าจับตามอง เทรนด์ที่